Public Function EI( _
ByVal vX As Variant _
) As Variant EI(-5.0) = -1.14829559127533E-03
EI(-5.0) = -E1(+5.0)
EI(-0.5) = -0.559773594776161
IsNull(EI(0)) = True
EI(+0.1) = -1.62281281396928
EI(+0.5) = 0.454219904863174
EI(+1.0) = 1.89511781635594
EI(+5.0) = 40.1852753558032
EI(+5.0) = -E1(-5.0)See also: E1 Function
DEI FunctionvX: Function returns Null if vX is Null or cannot be fixed up to a Double precision floating point number. EI calculates the double precision exponential integral, Ei(X), for positive double precision argument X and the Cauchy principal value for negative X. If principal values are used everywhere, then, for all X,
Ei(X) = -E1(-X)
or
E1(X) = -Ei(-X).Copyright 1996-1999 Entisoft
Entisoft Tools is a trademark of Entisoft.